And Now For Something Completely Different
Programming with Python

CSE/IT 107L

NMT Department of Computer Science and Engineering

“A beginning is the time for taking the most delicate care that the balances are
correct.”

— Frank Herbert (Dune)
“I choose to believe what I was programmed to believe.”

— Robot Villager #2 (Futurama)

4) 3x9="7 7
:3!@:3@:3%%:27
21
21
§)

Figure 1: http://xkcd. com/759

Introduction

Computer programs are written using programming languages. Python is a relatively simple and
frequently used programming language. It powers several popular applications, but we will use it
to learn the fundamentals of writing computer programs. This lab will help you learn the basics of
reading, writing and running Python programs.

You will learn how to use Python to compute arithmetic expressions, assign the results to variables,
debug your programs with the help of Python’s error messages, draw pictures using the Turtle
module, and run statements multiple times using for loops — the most important lesson in this lab.

http://xkcd.com/759

CSE/IT 107L Lab 1: Programming with Python

Contents
1 Starting Python 1
2 Arithmetic, Variables, and Values 1
21 PythonAsACalculator 1
211 AdditionWith+. 1
212 SubtractionWith- o o 1
2.1.3 Multiplication With*. L L oL 2
214 DivisionWith/and // 2
215 ModulusWith?% 2
2.1.6 Exponentiation With»x 0 L. 3
2.1.7 Negationand parentheses 3
22 FrstError e 4
2.3 Integers and Floating Point Numbers 4
2.4 Saving Valuesin Variables L L 4
241 Visualize Python CodeasitRuns 6
3 Writing Python Files 6
3.1 Show Results by Using the print () Function 7
32 AboutFunctions. 8
321 ParametersareInput 00 8
3.2.2 Returned ValuesareOutput. 8
3.3 Read User Input Using the input) Function 8
3.4 Convert User Input Into Numbers by Using the int () and float () Functions 9
3.5 Debugging Programs L o 10
4 Repetition with for Loops 10
41 NestedForLoops 11
42 For Loops Dependenton UserInput 12
5 Drawing Pictures With the Turtle Module 12
51 Drawing Functions 12
52 Control Drawing Speed L L 13
6 Sample Program 14
7 Exercises 16
Submitting 19

ii

G e W N =

-

-

CSE/IT 107L Lab 1: Programming with Python

1 Starting Python

To start the Python interactive shell, type the command python3 in your terminal. It is important
that you not use python, but python3. The output of this command should resemble this sample:

1 $ python3

2 Python 3.0.0 (default, Jun 2 2004)

3 [GCC 2.0.0 20041212] on linux

4 Type "help", "copyright", "credits" or "license" for more information.
5 >>>

Note the first line of output on line 2: Python 3.0.0. Make sure you have Python 3 or higher. In
these labs, sample text from sessions in the Python interactive shell are surrounded in a box and
have >>> before text that you are suppose to type. The $ python3 and the version output are not
shown. Here’s an example:

>>> # Text that appears in console font within a framed box and is preceded by
>>> # three greater-than signs contains code and results from a Python

>>> # interactive shell.

>>> print('this is some example output')

this is some example output

>>> exit()

Type exit () then press enter, or type the key combination Ctrl+D to exit the Python interactive
shell and go back to the terminal.

2 Arithmetic, Variables, and Values
2.1 Python As A Calculator

2.1.1 Addition With +

At the Python prompt >>> you can type in Python statements and immediately see the result. For
instance, to add 2 + 3, simply type 2 + 3:

>>> 2 + 3
5

Notice that after a statement is executed, you are given a prompt to enter another statement. The +
is called the addition operator.

2.1.2 Subtraction With -

>>> 2 - 3
-1

—_

O 0 N o U = W =

=
N = o

o U W N =

1
2

CSE/IT 107L

Lab 1: Programming with Python

2.1.3 Multiplication With *

>>> 2 % 3
6

2.1.4 Division With / and //

/ divides the left hand operand by the right hand operand, while // does the division and cuts off

the decimals.

>>> 2 / 3
0.6666666666666666
>>> 2 // 3

0

>>> 2 / 3.0
0.6666666666666666
>>> 2 // 3.0

0.0

>>> 2. / 3.
0.6666666666666666
>>> 2 / float(3)
0.6666666666666666

If you wish to drop the decimal portion, you must use //. If the result of a division drops decimal
portion of the answer then that type of division is called integer division (since your answer will
always be an integer) or floor division (since it will always round down).

This is an example of a major difference between Python 2 and Python 3. If you are using Python 2

some of these calculations will give different results.

2.1.5 Modulus With ¥

’ divides the left hand operand by the right hand operand and gives you the remainder.

>>> 5 9% 3
2
>>> 3 9% 5
3
>>> 7 % 3
1

If you divide 7 by 3, 3 goes into 7 twice with a remainder of one. The modulus of two numbers can

play an important role in many computations, and in later labs.

Modulus can, for example, tell you whether an integer is even or odd:

>>> 5 9 2
1

3
4

O 0 N U = W =

Y
N = o

A Ul R W N =

N

CSE/IT 107L Lab 1: Programming with Python

>>> 6 % 2
0

For even integers, division by two will yield a remainder of zero. For odds, it’s a remainder of one.

2.1.6 Exponentiation With *x

*x performs an exponential (power) calculation. a ** b means a raised to b. Do not confuse this
symbol with the caret (*), which performs an entirely different calculation.

>>> 2 k% 2

4

>>> 2 xx 3

8

>>> 10 ** 5
100000

>>> 5 *x 10
9765625

>>> 9 %% 0.5
3.0

>>> 5.5 *x* 6.8
108259.56770464421

2.1.7 Negation and parentheses

- can be used to negate a number and parentheses can be used to control the order of operations.

>>> -5

-5

>>> -(55 * 10 + 1000)
-1550

>>> -55 x 10 + 1000
450

Python can handle very large numbers. Try raising 10 to the 100th power (this number is called
googol.)

>>> 10 **x 100

These operators can be combined to form more complicated calculations. They follow typical prece-
dence rules, with *x having higher precedence than %, /, %, and //, which have higher precedence
than + and -. If operators have equal precedence they execute left to right. You can always use
parentheses to change the precedence.

1000p0OO000000000

[B N O N I

1S T SO S R

CSE/IT 107L Lab 1: Programming with Python

>>> 6 % 5 % 4

2

>>> 6 * (5 % 4)

6

>>> 6 x5 % 4 -6 xx 7 +80/ 3 # (:('6><5>'%>4)7(77’¥
-279907.3333333333 ‘

The # indicates the start of an inline comment. Use them to remind yourself and others about the
behavior of or rationale behind the code.

2.2 First Error

What happens if you try to divide a number by zero?

>>> 100.0 / 0.0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
100 / arbitrary
ZeroDivisionError: float division by zero

Python raises a ZeroDivisionError and gives you the message float division by zero. In later
labs, we will learn how to use code to detect some Python errors.

2.3 Integers and Floating Point Numbers

There are two types of numbers in Python, integers and floating point numbers, also called ints and
floats. Integers do not have a decimal point and can represent any number without a decimal point
(as long as the machine has enough memory), while floats can represent numbers with decimal
points but have limited range (approximately between the enormous numbers —10%% and 10%%).

Here are some examples of integers:

0, 1, 134, -3, -10000

Floats can be written using scientific notation: 5.6E14. The number mEx is interpreted as m - 10*.
0.0, 1.0, -2.0, 4.5, -7.41412, 5.6E14, -2.333333E-9

2.4 Saving Values in Variables

Ints and floats are examples of Python values. Python values are the result of computations such
as 2 + 2; they are also literal numbers like 2 or 3.1415. Think of values as the final results of
calculations. We will learn about many more types of values as the course progresses.

Variables let you store values and use them in later parts of the program. They are an indispensable
feature of Python. The assignment operator (=) is for assigning a value to a variable. A variable can
have any name consisting of letters, numbers, and underscores. A variable name cannot start with
a number. Once a variable has been assigned, it can be used in future computations as though it
were a value. Variables can be reassigned, they can also refer to their previous value. For example,
to increment a variable x this code should assign it its previous value plus one: x = x + 1.

4

O 0 N G = W =

N U = W =

© ©® N G R W N =

W =

CSE/IT 107L Lab 1: Programming with Python

>>> x =7
>>>
>>> y
12

>>> x

<
|
(e}
+
»

>>> x =x + 1
>>> x

In general, you should try to give your variables descriptive names so that it is clear what they are
meant to store; for example:

>>> food_price = 4.50

>>> drink_price = 1.00

>>> subtotal = food_price + drink_price
>>> tax = subtotal * 0.07

>>> total = subtotal + tax

>>> total

5.885

>>> arbitrary = 10.0
>>> 100 / arbitrary
10.0
>>> arbitrary = 0.0
>>> 100 / arbitrary
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
100 / arbitrary
ZeroDivisionError: float division by zero

It is important for you to know the difference between values and variables. Values that we currently
know are integers and floating point numbers like 5 or 3.1415. Variables store copies of values.
Can you predict the final values of x and y in the following code?

>>> x = 4
>>>y=x
>>> x =x + 1

Here, x was assigned to the value 4. Then, the assignment y = x copied the value stored in x to y.
In the third line, x was assigned to the previous value of x plus one. In the end, x contains 5 and y
contains 4.

Notice that variables can be reassigned. This is because the second x in x = x + 1 refers to the
previous value. A useful trick for reading assignment statements is to read them right-to-left. For
example, x = x + 1 can be read as “the previous value of x plus one should be the new value of x.”

N

CSE/IT 107L Lab 1: Programming with Python

2.4.1 Visualize Python Code as it Runs

To see this relationship between values and variables more clearly, you may use pythontutor.com
to visualize your Python code as it runs. Ensure you are using the Python 3 visualizer. See the
following images for an example session.

Write code in | Python 3.3 v
1 x =4
2 y =X
3 x=x+1

Figure 2: Editing code in the Python Tutor visualization tool. Please ensure you have select a version of
Python 3 before typing or copying+pasting your code. After you finish entering Python code, you will have
to press a button that says “Visualize Execution.”

Python 3.3 Frames
X =4 Global frame
y =X
X =x+1 x 5

y |4

Edit code | Live programming

ine that has just executed
== next line to execute

NEW! Click on a line of code to set a breakpoint. Then use the Forward and Back buttons to
jump there.

=< First < Back | Program terminated | Forward = Last ==

Figure 3: Watching code run in the Python Tutor visualization tool. Final values are presented on the right
under the label “Global frame.” Use the buttons “First,” “Back,” “Forward,” and “Last” to visualize each
step of your program.

3 Writing Python Files

So far, you have been using Python through the interactive shell. This lets you test ideas quickly
and easily. However, it is important to know how to save your code to a file and to run it later as a
program. Python code that you save to a Python file works almost identically to what you type
when using the Python interpreter.

In every lab document, any code that belongs in a Python file will be formatted like this:

Text that appears in console font within a framed box is sample Python code.
for, while, with, ==, in, as, if, and, or, not

To run this type of Python code, you must save it to a file with extension . py. The py extension indi-
cates it is a Python file. We can run it as a program by using the command python3 filename.py.

6

pythontutor.com

CSE/IT 107L Lab 1: Programming with Python

How can we run the previous examples as Python files? Try to type one of the previous examples
in a Python file. Open a file and name it arithmetic.py (or any other name that ends with .py.
Type the following:

=W N =

<M< ™
|
o
+
"

This code is similar to a previous example. To run this file, use the command python3 arithmetic.py.

1 $§ python3 arithmetic.py

Unlike most Linux commands that you've seen, this command should produce no output. We will
fix that in the next section.

3.1 Show Results by Using the print () Function

The Python interactive shell automatically prints values, but we must use a Python function called
print () to achieve the same result when running a Python file. To display the value of x, write
print(x). Let’s fix arithmetic.py. Change the file so it has the following contents:

x=17
y=5+x
print (y)
print(x)
x=x+1
print (x)

U e W N =

1 $§ python3 arithmetic.py
2 12

37

48

What if you want to print something other than numbers? We can print another type of value
called a string. These are written like this: 'Hello world', or equivalently, "Hello world". They
are sequences of letters, numbers, and white-space. We’ll learn more about strings in later labs. Re-
member thatx = '5' and x = 5 denote different things. Open a text editor and type the following
Python code:

-

print("Hello, world!")

Save your file as hello.py and type the command python3 hello.py to run it.

1 $ python3 hello.py
2 Hello, world!

—_

@ N =

CSE/IT 107L Lab 1: Programming with Python

print is a function with the specific task of printing the value of whatever is within its parentheses.
It is important to note that print ("Hello, world!") is the same as print('Hello World!'). The
special string '\n' represents a newline. This means that the text after the \n will start on a new
line. Test this with the following example:

print ('Hello, world!\nHow are you?')

3.2 About Functions

A function is a self-contained command that performs one specific task. Like a function in math,
you can give it one or more parameters. A function may also pass a value back to the user. How
many parameters are appropriate and what value is passed back depends on the specific function,
though. Let’s look at some examples.

3.2.1 Parameters are Input

Note that functions are used (or called) by putting its name followed by parentheses and some
parameters (sometimes also called arguments) to the function. A function may have none, one, or
multiple parameters (the parentheses always have to be there, though). For example:

function_name ()
function_name (parameter)
function_name(parameterl, parameter?2)

3.2.2 Returned Values are Output

If a function produces any output, it is returning its output. You can save the output of a function
by assigning it:

x = functionl()
function2(parameter)
z = function3(parameterl, parameter?2)

<
1]

We can infer some important lessons from this sample. Some functions, such as functionl only
produce output and accept no input. The other functions can take one or more parameters and
return output. You will learn how to make your own functions in later labs. Using and creating
functions is a fundamental part of writing computer programs.

Think of a function as a machine that takes parameters, processes them, and gives back the return
value, which may be saved by assigning it to a variable.

3.3 Read User Input Using the input () Function

So far, the only person in the world that can modify how your program behaves is you, by changing
the program itself. But what if we want the Python file to work more like other programs, which

8

CSE/IT 107L Lab 1: Programming with Python

accept input from their users (such as the person typing the command python3 pythonfile.py)
and change their behavior? The function input () will display whatever string you write enclosed
in parentheses after it, just like print () does; but it also pauses the program and returns whatever
the user types. We can assign this to a variable and then modify our program’s behavior based on
what the user typed. For example, type this in a file called input.py:

—_

user_input = input('Type something, then press enter: ')
print (user_input)

N

What will this Python file print when we run it and type “hello program! <ENTER>"?

1 $ python3 input.py
2 Type something, then press enter: hello program!
3 hello program!

As promised, the function input() prints 'Type something, then press enter: '. Then the
program pauses and reads user input. At this point, the variable user_input should contain the
value "hello program!". It finishes by printing the value of this variable.

3.4 Convert User Input Into Numbers by Using the int () and float () Functions

What if we want to interpret the user’s input as a number instead of as a string? Let’s try using
input ()’s return value as a number in the Python interactive shell:

>>> user_input = input('Write a number: ')
Write a number: 55
>>> print(user_input)
55
>>> user_input + 10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
user_input + 10
TypeError: Can't convert 'int' object to str implicitly

O ® N U ol W N =

This error message lets us know that we cannot use the user’s input as a number because it is a
string. It must be converted into an integer or into a floating point number by using the functions
int () or float (). For example, let’s write a program that will read the user’s input and try to
convert it into an integer. Then it should multiply the input by 10 and print the result. Save it to a
file called multiplyby10.py:

user_input = input('Please enter an integer: ')
user_input = int(user_input)

print ('The result is:')

print (user_input * 10)

=W N =

Try to run the program three times with inputs: “55,”, “55.0,” and “not numeric.”

CSE/IT 107L Lab 1: Programming with Python

1 $ python3 multiplybyl0.py

2 Please enter an integer: 55

3 The result is: 550

4

5 $ python3 multiplybyl0.py

6 Please enter an integer: 55.0

7 The result is:

8 Traceback (most recent call last):

9 File "multiplybylO.py", line 2, in <module>

10 user_input = int(user_input)

11 ValueError: invalid literal for int() with base 10: '55.0'
12

13 $ python3 multiplybyl0.py

14 Please enter an integer: not numeric

15 The result is:

16 Traceback (most recent call last):

17 File "multiplybylO.py", line 2, in <module>

18 user_input = int(user_input)

19 ValueError: invalid literal for int() with base 10: 'not numeric'

This demonstrates one successful run and two failures. If the user does not enter a string that can
be converted to an integer, such as a floating point number such as 55.0 or 'not a number', the
Python program will throw a ValueError with messages invalid literal for int() with base
10, and exit. These errors are caused by the int () function. We will learn how to control for bad
input in later labs.

Try to make and test a new program that uses the conversion function float () instead of int (). Try
to give every program that you write invalid or extreme inputs, or consider what would happen
if a program using external information (return values from input ()) received something unusual.

3.5 Debugging Programs

A bug is an error in computer code that causes unexpected behavior. “Operators traced an error in
the 1946 Mark II computer to a moth trapped in a relay, coining the term bug. This bug was carefully
removed and taped to the log book” (http://ei.cs.vt.edu/ history/Hopper.Danis.html.) There
is no definite method of fixing or preventing unintended behavior, but modern programming
languages offer many features for helping you find errors in your code.

Python will try to pinpoint which part of your code produced an error. This feedback
can include the file name (multiplyby10.py), line number (2), and a part of the code
(user_input = int(user_input)). Pay attention to any error messages that Python prints.

4 Repetition with for Loops

What if we wanted to print every number from 0 to 2? Here’s a simple, but repetitive solution:

—_

print (0)
print (1)
print(2)

@ N

10

http://ei.cs.vt.edu/~history/Hopper.Danis.html

N

G e W N =

N

O N

N N

CSE/IT 107L Lab 1: Programming with Python

What if we wanted to print all numbers from 0 to 100? Or 0 to a different number, dependent on
user input? We can use Python’s for loops to repeat sections of code multiple times. For example,
here is another way to print all numbers from 0 to 5:

for i in range(3):
print (i)

Note for i in range(N) takes the variable i and assigns it the values 0, then1,and up toN - 1.
This approach is equivalent to this code:

i=0
print (i)
i=1
print (i)
i=2
print (i)

Now it becomes easy to print the numbers from 0 to 100; simply replace the 3 with 101.

for index in range(100):
print (i)

Note you can use Python variables, and anything else that results in an integer value, as the
range limit. For example: for i in range(n * 3 + 5) and for count in range(33 * 4). You
may refer to variables that are defined outside of the for loop and modify them repeatedly. This
example adds all numbers from 0 to 9 then prints the result:

x =0

for i in range(10):
x=x+1i

print(x)

4.1 Nested For Loops

For-loops don’t have to contain simple statements, any Python code can be repeated many times;
even for-loops! What do you suppose the following code sample does?

n=23
for row in range(n):
for column in range(n):
print(row * column)

It assigns 0 to row, then sets column to 0, then 1, then 2. The program prints 0 three times. Then it
assigns 1 to row, then sets column to 0, then 1, then 2. Now 0, 1, then 2 are printed. The last iteration
assigns 2 to row, and again sets column to 0, then 1, then 2. Finally, the program prints 0, 2, and 4.

11

=W N =

[S O O N

CSE/IT 107L Lab 1: Programming with Python

4.2 For Loops Dependent on User Input

What if we do not know the number of iterations a for-loop must execute when we’re writing
the Python program? One way to do this is to use an integer that was read using input () and
converted using int () as the range limit. This sample program prompts the user for a positive
number, then it prints all numbers from 1 to the user’s input:

user_input = input('Please enter a positive number: ')
user_input = int(user_input)
for i in range(user_input):

print (i)

This program prints the sum of all numbers from 1 to the user’s input:

user_input = input('Please enter a positive number: ')
user_input = int(user_input)
x =0
for i in range(user_input):
x=x+1i
print(x)

What happens if the user’s input is negative? Remember, for-loops integrate perfectly with many
other Python features, can you think of any other ways to use for-loops?

5 Drawing Pictures With the Turtle Module

We will use Python’s Turtle module to draw on the screen. A module can be accessed by importing
it; to do this, you may type import turtle in Python.
5.1 Drawing Functions

Once the module is imported, you have access to a group of functions for controlling the “turtle”,
an arrow that moves around at your command, drawing a line where it goes.

turtle.forward(x) Move the turtle forward x pixels.
turtle.backward(x) Move the turtle backward x pixels.
turtle.left(x) Turn the turtle left x degrees.
turtle.right(x) Turn the turtle right x degrees.
turtle.pendown() Draw the turtle’s path.

turtle.penup() Stop drawing.

12

O ® N U e W N =

CSE/IT 107L Lab 1: Programming with Python

Combining these commands will let you draw more complicated shapes. This code will draw
a hexagon with side length 100. Because tracing mode is off, the turtle finishes almost instantly.
Usually, turtle programs close the moment they are done drawing. The function turtle.done()
keeps the picture open.

import turtle

turtle.tracer(False)

length = 100

for i in range(6):
turtle.forward(length)
turtle.left(60)

turtle.update()

turtle.done()

5.2 Control Drawing Speed

You will find it convenient to change the speed at which these drawings are made. Use
the turtle.speed('fastest') function to change the speed of the turtle. You may also call
turtle.tracer(False) to turn off tracing and then call turtle.update () when you want to show
the results.

13

N

O 0 N G o= W =

NN NN N NN N N R e s e s s e s
@ N U kR W N = O 0V N Ul e W N = O

CSE/IT 107L Lab 1: Programming with Python

6 Sample Program

Inline comments are parts of a Python program used to convey the meaning and purpose of a
section of Python code. They are not read by Python, only by programmers. Use them to explain
why you are doing something, not to repeat the tedious details. They look like:

This is a comment.
print(2 * 2)

Read the following program. Make sure you understand how it works.

It uses some new functions from the turtle module:

turtle.bgcolor() Used to change background color. White by default.
turtle.color() Change color of the turtle icon.

turtle.window_width(), turtle.window_height () Get width and height of the turtle’s win-
dow or drawing area.

turtle.goto() Place turtle at specific coordinates on the screen.

turtle.dot(diameter, color) Draw a dot of specified diameter and color.

import turtle

Program inputs.

print('Welcome to the 107L1 Radially-Precise, Pre-17th Century Planetarium!')
zoom = 0.005 # input('How far to zoom in?')

separation = 20 # input('How far should planets be drawn?')

turtle.tracer(False)

Screen and turtle colors.
turtle.bgcolor('black')

Do not draw the turtle's path.
turtle.penup()

Get window size.
height = turtle.window_height ()
width = turtle.window_width()

Draw (2 * decoration) ** 2 stars.

decoration = 15

scale = max(height, width)

for col in range(-decoration, decoratiomn):

for row in range(-decoration, decoration):

row / decoration gives is a number between -1 and 1
the “scale” variable determines the space between stars
y = row / decoration * scale

14

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

CSE/IT 107L

Lab 1: Programming with Python

turtle.

Move
turtle.

Draw
turtle
turtle.

Draw
turtle
turtle

Draw
turtle
turtle.

Draw
turtle.
turtle

Draw
turtle.
turtle.

Draw
turtle
turtle.

turtle.

shift every other row of stars by 50%
x = col + 0.5 * (row % 2)
x = x / decoration * scale

turtle.goto(x, y)

make every other star's radius larger
turtle.dot(1 + col % 2, 'white')

Go back to the center of the window.

goto(0, 0)

close to the edge.

forward(-width / 2 * 0.9)

Mercury

.dot(2 * 2439.7 * zoom, "gray")

forward((2439.7 + 6051.8) * zoom + separation)
Venus

.dot(2 * 6051.8 * zoom, "tan")

.forward((6051.8 + 6371.0) * zoom + separation)
Earth

.dot(2 * 6371.0 * zoom, "blue")

forward((6371.0 + 3389.5) * zoom + separation)
Mars

dot(2 * 3389.5 * zoom, "red")

.forward((3389.5 + 69911) * zoom + separation)
Jupiter

dot(2 * 69911 * zoom, "orange")

forward((69911 + 58232) * zoom + separation)
Saturn

.dot (2 * 58232 * zoom, "tan3")

forward (58232 * zoom + separation)

done ()

Try to run it. Can you think of any modifications? We will see a more complete and concise version
in lab 4, when a new type of value — the Python list — is introduced.

15

CSE/IT 107L Lab 1: Programming with Python

7 Exercises

— Read Before Starting

Make sure you understand the sample program and all of the sections about Python syntax
and functions before starting these exercises.

Information on submitting the assignment is on the last page.

Exercise 7.1 (conversion.py).

Write a program that reads a floating point number using the input () function. Assume this
number is in meters and convert it to feet, yards, and miles. Then print each of these three
results.

For reference, 1 meter equals 3.281 feet, 1.094 yards, and 6.214 10~* = 0.0006214 miles.

Here is a sample that demonstrates the functionality of the finished program:

1 $§ python3 conversion.py

2 Please type a measurement in meters: 1
3 The measurement in feet is:

4 3.281

5 In yards:

61.094

7 In miles:

8 0.0006214

Exercise 7.2 (mean.py).
Write a program that accepts 10 floating point numbers from the user and prints the running
average after each number is entered.

Here is pseudo-code (not valid Python code) for calculating the running average:

1sum = 0

2 count = 0

3 running_average = 0

4 get user_input 10 times and:

5 count = count + 1
6 sum = user_input + sum
7 running_average = sum / count

This is how this program should behave in case the user types “1 <ENTER> 2 <ENTER> 3
<ENTER> 4 <ENTER> 5":

16

CSE/IT 107L

Lab 1: Programming with Python

1 $§ python3 mean.py

2 Please enter an integer:

31.0
4 Please
51.5
6 Please
72.0
8 Please
9 2.5
10 Please
11 3.0

enter

enter

enter

enter

an

an

integer:
integer:
integer:

integer:

And in case of 2.1, 4.7,10.3, -4, 77:

1 $ python3 mean.py

2 Please enter an integer:

32.1

4 Please enter an integer:

5 3.4000000000000004

6 Please enter an integer:

7 5.7

8 Please enter an integer:

9 3.2750000000000004

2.1

4.7

10.3

-4

Exercise 7.3 (polygonsl.py).

Ask the user to enter a positive integer. Then consecutively draw shapes with 3,4, 5, 6, and 7
sides where the side length of each is the user’s input. For example, if the user enters 100, your

program’s output should resemble:

Distance between shapes does not matter, as long as they do not overlap.

Exercise 7.4 (spiral.py).
Write a script that asks the user to enter an angle. Then use turtle to draw 128 lines, each line is
separated by the given angle and each line is slightly bigger than the last.

For example, if the angle is 60° then your code should draw a spiral that’s made up of hexagons,
as shown in the sample pictures.

17

Lab 1: Programming with Python

CSE/IT 107L

ST\
=

>

/23
TS T

77°
90°

Each image has 128 lines. The length and size of each component of your drawing does not
18

have to be identical to that of the sample pictures.

44°
60°

CSE/IT 107L Lab 1: Programming with Python

Index of New Commands, Functions, and Methods

assignment, =, 4 operator +, addition, 1 turtle.goto(), 14
operator /, division, 2 turtle.left(x), 12
bug, 10 operator //, floor division, turtle.pendown(), 12
2 turtle.penup(), 12
float(),9 operator %, modulus, 2 turtle.right(x), 12
for, 11 turtle.speed(’fastest’),
function arguments, 8 parentheses, 3 13
function calls, 8 print(),7,9 turtle.tracer(False), 13
function parameters, 8 python3, 1 turtle.update(), 13
function return value, 8 turtle.window_height (),
‘ ‘ reassignment, 5 14
?mportmg modules, 12 . turtle.window_width(),
inline comments, 4 strings, 7 14
input (), 9
int(), 9 Turtle module, 12 tor - "
’ turtle.backward(x), 12 unary ogera of -, negation,
newline \n, 8 turtle.bgcolor(), 14
number, floating point, 4 turtle.color(), 14 ValueError, 10
number, integer, 4 turtle.done(), 13 values, 4
turtle.dot(diameter, variable, 4
operator **, exponentiation, color), 14
3 turtle.forward(x), 12 ZeroDivisionError, 4

Review Lab 0 if you do not know how to compress your files into a . tar. gz file.

Submitting

You should submit your code as a tarball that contains all the exercise files for this lab. The submitted
file should be named

csel07_firstname_lastname_labl.tar.gz

Upload your tarball to Canvas.

List of Files to Submit

7.1 Exercise (conversion.py) e 16
7.2 Exercise (mean.py) 16
7.3 Exercise (polygonsl.py) 17
7.4 Exercise (spiral.py) 17

Exercises start on page 16.

19

	1 Starting Python
	2 Arithmetic, Variables, and Values
	2.1 Python As A Calculator
	2.1.1 Addition With +
	2.1.2 Subtraction With -
	2.1.3 Multiplication With *
	2.1.4 Division With / and //
	2.1.5 Modulus With %
	2.1.6 Exponentiation With **
	2.1.7 Negation and parentheses

	2.2 First Error
	2.3 Integers and Floating Point Numbers
	2.4 Saving Values in Variables
	2.4.1 Visualize Python Code as it Runs

	3 Writing Python Files
	3.1 Show Results by Using the print() Function
	3.2 About Functions
	3.2.1 Parameters are Input
	3.2.2 Returned Values are Output

	3.3 Read User Input Using the input() Function
	3.4 Convert User Input Into Numbers by Using the int() and float() Functions
	3.5 Debugging Programs

	4 Repetition with For Loops
	4.1 Nested For Loops
	4.2 For Loops Dependent on User Input

	5 Drawing Pictures With the Turtle Module
	5.1 Drawing Functions
	5.2 Control Drawing Speed

	6 Sample Program
	7 Exercises
	Submitting

