
Defining Functions and Modules

CSE/IT 107L

NMT Department of Computer Science and Engineering

“How do we convince people that in programming simplicity and clarity – in short:
what mathematicians call elegance – are not a dispensable luxury, but a crucial matter
that decides between success and failure?”

— Edsger Dijkstra

“Simplicity is the ultimate sophistication.”

— Leonardo Da Vinci

“Only ugly languages become popular. Python is the exception.”

— Donald Knuth

Figure 1: http://xkcd.com/353

i

http://xkcd.com/353

CSE/IT 107L Lab 3: Defining Functions and Modules

Introduction

This lab is meant to introduce the "".format() function for printing values, a new type of loop
called the while loop, and the reasons and methods for defining Python functions and modules.

Contents

1 Convert Variables and Values to Formatted Strings Using "".format() 1
1.1 Printing Numbers . 1
1.2 Alternatives . 2

2 Repetition with while Loops 2
2.1 Infinite Loops . 3
2.2 Indefinite Loops . 3
2.3 Reading User Input . 4

3 Defining Functions 4
3.1 Intuition . 4
3.2 A Function With No Input or Output . 5
3.3 A Function With Input and No Output . 5
3.4 A Function That Produces Output Using the return Keyword 6

4 Reusing Code: Creation and Usage of Modules 8
4.1 Bad Solution: Copy and Paste . 8
4.2 Half Solution: Import Your Code . 8
4.3 Full Solution: Import Your Code and Check the __name__ Variable 9
4.4 Boilerplate Code: Check if __name__ == "__main__" 10

5 Making Calculations Shorter 11

6 Sample Program 11

7 Exercises 13

Submitting 16

ii

CSE/IT 107L Lab 3: Defining Functions and Modules

1 Convert Variables and Values to Formatted Strings Using "".format()

Previously, when we wanted to print out both a number and a string, we had to print them on
separate lines:

1 print("x is equal to:")
2 print(x)

However, there is a more effective way to print Python values. The "".format() method offers
many more options for formatting output:

1 >>> x = 5
2 >>> print("x is equal to: {}".format(x))
3 x is equal to: 5
4 >>> import math
5 >>> print("5 digits of pi: {:.5f}".format(math.pi))
6 5 digits of pi: 3.14159

In the first example, the function replaces the "{}" in the string with the value of x. If we include
multiple instances of {} in our string, we are able to pass multiple values to "".format(). It will
place each of the values into the string.

1 >>> x = 5
2 >>> y = 6
3 >>> print("x is equal to {} and y is equal to {}.".format(x, y))
4 x is equal to 5 and y is equal to 6.
5 >>> print("row {}: {},{},{}".format(1, x, y, 1))
6 row 1: 5,6,1

1.1 Printing Numbers

We can use the "".format() method to print a specific number of decimal places. To do this, add
:.2f inside of the {}. The .2f specifies that we want 2 digits to follow the decimal point.

1 >>> print(3.141592653589793)
2 3.141592653589793
3 >>> print("{:.2f}".format(3.141592653589793))
4 3.14

For more powerful formatting options, see

https://pyformat.info/

https://docs.python.org/3/library/string.html#format-string-syntax

1

https://pyformat.info/
https://docs.python.org/3/library/string.html#format-string-syntax

CSE/IT 107L Lab 3: Defining Functions and Modules

1.2 Alternatives

You are encouraged to use "".format() in your exercises, but there are several other ways
of achieving the same results. For the sake of simplicity and brevity we will only show brief
demonstrations. If y = 5, then the lines print('X ' + str(y) + ' Z'), print('X %s Z' % y),
and print("X", y, "Z") have the same effect.

2 Repetition with while Loops

As we saw in lab 0, Python’s for loops have limitations. It is not possible to use them to repeat
code for an indefinite number of times. To do that, we’ll have to use while loops, which allow for
more free-form iteration. The syntax of a while loop is very similar to that of an if statement, but
instead of only running the indented block of code once, the loop will continue running it until the
given boolean statement is no longer true. In general, while loops look like:

1 while boolean_condition:
2 # run this code until the boolean is False
3 pass
4 # run this code once the while loop finishes

The special keyword pass is a placeholder for indented Python code. Here’s an example:

1 x = 10
2 while x > 0:
3 print(x)
4 x = x - 1

The above program will print out the numbers 10 to 1. There are many ways to decide when a while-
loop should stop running its code — the previous demonstration involves variable reassignment.
Every time the loop runs, the code assigns a smaller value to the Python variable x. Eventually, the
variable is smaller than 1 and the loop stops running. It is similar to this code:

1 x = 10
2 if x > 0:
3 print(x)
4 x = x - 1
5 if x > 0:
6 print(x)
7 x = x - 1
8 if x > 0:
9 ... # arbitrary depth!!!

Try to run the following code manually. What should it print?

1 x = 10
2 while x > 0:

2

CSE/IT 107L Lab 3: Defining Functions and Modules

3 x = x - 1
4 print(x)

This version of the program will print out the numbers 9 to 0. This might seem a bit strange, since
the condition of the loop says it will stop when x is no longer larger than 0. And yet, it prints out
the value 0 before the loop ends. This is because the loop condition is only checked whenever the
end of the indented section is reached. If the condition is True, then the indented section will be
executed again. If the condition is False, then the loop will end.
If the boolean value starts out False, then the loop will never execute. An example:

1 x = 0
2 while x > 0:
3 x = x - 1
4 print(x)

2.1 Infinite Loops

Although while-loops are more flexible, they are also more dangerous and harder to debug than
for-loops. If the boolean statement is never False, the Python code could go into an infinite loop.

1 while True:
2 print("Printing forever")

Press Ctrl+C to stop this loop.

2.2 Indefinite Loops

Let’s write a clone of the Linux command cat. It should take a line of the user’s input and immedi-
ately print it.

1 user_input = "" # no input yet...
2 while user_input != "exit":
3 user_input = input()
4 print(user_input)

The while loop depends on user input. It only stops when the user types “exit.” Otherwise, it keeps
prompting for more input. This loop runs for an indefinite, maybe even infinite, number of times.
For example, the Python interactive shell reads lines of Python code until you type Ctrl+D or “exit”.
Video games draw frames to the screen until the graphics engine needs to shutdown. Many other
programs need to loop for an indefinite number of times.

3

CSE/IT 107L Lab 3: Defining Functions and Modules

2.3 Reading User Input

The following sample program repeatedly prompts for user input and prints the sum of all inputs
until the user types either “exit” or “forget”. This is also an example of conditional statements
nested within while loops. There could also be a while-loop within a conditional statement.

1 user_input = ""
2 sum = 0
3 print("Type 'exit' to quit, or 'forget' to reset")
4

5 # stop when the user's input is 'exit'
6 while user_input != "exit":
7 user_input = input("Please type a number: ")
8 if user_input == "forget":
9 sum = 0

10 elif user_input == "exit":
11 print("goodbye!")
12 else:
13 user_input = int(user_input)
14 sum += user_input
15 print(sum)

3 Defining Functions

As we have seen, functions can be called with a specific number of arguments and some functions
return values that can be assigned to variables. For example, the print(x) function takes an
argument and returns nothing; y = input(x) takes an argument and returns a string; and the
turtle.goto(x, y) function takes two arguments and returns nothing. In this section, we will
describe the idea of a function and you will learn how to write your own functions.

3.1 Intuition

A function accepts some number of parameters as input, it could also take no input. A function
runs code using its inputs, and then returns an output. A function should have a clearly defined
purpose and a short but descriptive name. Think of a function as a subprogram or a machine that
is available for use by any part of the Python program.

Figure 2: A diagram of a function. Inputs are on the left, output is on the right.

Functions are important because they are:

Modular Functions allow us to break our programs into many smaller pieces. This also allows us
to easily think about each small piece in detail.

4

CSE/IT 107L Lab 3: Defining Functions and Modules

Easy to Test Functions allow us to test small parts of our programs while not affecting other parts
of the program — this reduces errors in our code.

Reusable Instead of writing the same code many times, we can place this code within a function
and call the function whenever that code is needed.

3.2 A Function With No Input or Output

The simplest function is one that takes no input and returns no output. It is defined by writing the
def keyword, the function’s name, matching parantheses, and a colon. Then, the code that should
run when the function is called must be written and indented. Some examples of these functions
are the turtle.done() and the exit() functions.

1 def function_name():
2 # Python code
3 pass
4 # to run the Python code:
5 function_name()

When called, the following function, prints “goodbye” and then exits the program:

1 >>> def goodbye_and_exit():
2 ... print("Goodbye.")
3 ... exit()
4 >>> goodbye_and_exit()
5 Goodbye.

3.3 A Function With Input and No Output

A function can take zero or more parameters as input. For example, the print() function takes
a Python value as its input. To write a function that takes parameters, write them within the
parentheses. The parameters can be used from within the function’s code as though they are
variables.

1 def function_name(parameter):
2 # Python code uses the variable named `parameter`
3 pass
4

5 def function_name2(parameter1, parameter2, parameter3):
6 # Python code that uses all 3 parameters
7 pass
8

9 # Using these functions:
10 function_name("sample") # `parameter` has value set to "sample"
11 function_name2(5, 9, 3) # `parameter1` is set to 5

5

CSE/IT 107L Lab 3: Defining Functions and Modules

1 >>> import turtle
2 >>> def draw_hexagon(side_length):
3 ... for i in range(6):
4 ... turtle.forward(side_length)
5 ... turtle.left(360 / 6)

3.4 A Function That Produces Output Using the return Keyword

When we used functions from the math module, we were always able to assign the result of a
function to a variable. For example:

1 >>> import math
2 >>> x = math.sqrt(16)
3 >>> print(x)
4 4.0

So how do we get a function to give back a value — or return a value? We write a return statement
at the end of the function by writing the return keyword and the Python value or variable that the
function should output.

1 def function_name(parameter1, parameter2):
2 # Python code uses variables named `parameter1`, `parameter2`
3 # defines `result` somewhere
4 result = ...
5 return result
6

7 # To use it:
8 x = function_name(2, 10) # parameter1 set to 2, x set to return value

An example:

1 >>> def square(x):
2 ... return x ** 2
3 ...
4 >>> y = square(5)
5 >>> print(y)
6 25
7 >>> square(4.3)
8 18.49

As soon as a return statement is reached, the function stops executing and just returns the value
given to it. Any subsequent statements that are part of the function will be skipped.
If a function is called with a different number of parameters than it was designed for, Python will
raise a TypeError with a message that says how many parameters it should take. This function
takes two parameters and returns a numeric value:

6

CSE/IT 107L Lab 3: Defining Functions and Modules

1 >>> def wage(hours, base_rate):
2 ... if hours > 40:
3 ... ot_pay = (hours - 40) * base_rate * 1.5
4 ... return base_rate * 40 + ot_pay
5 ... pay = hours * base_rate
6 ... return pay
7 ...
8 >>> wage(40, 10)
9 400

10 >>> wage(50, 10)
11 550.0
12 >>> wage(10)
13 Traceback (most recent call last):
14 File "<stdin>", line 1, in <module>
15 wage(10)
16 TypeError: wage() missing 1 required positional argument: 'base_rate'
17 >>> wage(10, 20, 30)
18 Traceback (most recent call last):
19 File "<stdin>", line 1, in <module>
20 wage(10, 20, 30)
21 TypeError: wage() takes 2 positional arguments but 3 were given
22 Traceback (most recent call last):
23 File "<stdin>", line 1, in <module>
24 wage(10, 20, 30)
25 TypeError: wage() takes 2 positional arguments but 3 were given

The grocer function takes two parameters and returns a string:

1 >>> def grocer(num_fruits, fruit_kind):
2 ... return 'Stock: {} cases of {}'.format(num_fruits, fruit_kind)
3 ...
4 >>> grocer(37, 'kale')
5 'Stock: 37 cases of kale'
6 >>> print(grocer(0, 'bananas'))
7 Stock: 0 cases of bananas

A function may also call other functions. Here is the wage example, but now the wage_after_tax
function uses the wage function:

1 def wage(hours, base_rate):
2 """Calculate and return weekly pay for a given amount of hours and base rate taking
3 into consideration overtime pay at 1.5 times the given rate."""
4 if hours > 40:
5 ot_pay = (hours - 40) * base_rate * 1.5
6 return base_rate * 40 + ot_pay
7 pay = hours * base_rate
8 return pay
9

10 def wage_after_tax(hours, base_rate, tax_rate):

7

CSE/IT 107L Lab 3: Defining Functions and Modules

11 """Calculate and return weekly pay after taxes for a given amount of hours and a
12 base rate with a flat tax rate."""
13 pay = wage(hours, base_rate) # use the previously defined function
14 return pay * (1 - tax_rate)

A good resource:

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

4 Reusing Code: Creation and Usage of Modules

When writing large programs, it is convenient to split them into small files. This makes it easier to
test and debug small parts of the entire program. How can a programmer use code from two or
more different .py files?
The solution is to place your code into modules. A module is essentially a .py file. In fact, you’ve
been writing Python modules this entire semester. You could import the file test.py and access
anything defined within it by writing import test. However, these files are likely are missing one
bit of code to work properly.

4.1 Bad Solution: Copy and Paste

You could copy and paste the code you wish to share between two .py files, but this is a terrible
idea under almost any circumstance. Any fixes or improvements to either segment of shared code
must be copied manually. If the code is used frequently, this might have to happen multiple times.
If you use modules, a programmer can immediately tell that you’re using code from another file
and understand that they may need to interact with the imported file as well.

4.2 Half Solution: Import Your Code

For learning purposes, let’s try to write and import a broken module. Place the following text in a
file called bad_artifical_intelligence.py.

1 def greetings(recipient):
2 greeting = "Hello {}!".format(recipient)
3 return greeting
4

5 # test the greetings functions
6 if greetings("World") == "Hello World!":
7 result = "passed"
8 else:
9 result = "failed"

10 print("The `artificial_intelligence` module has {} all tests!".format(result))

Here we have a function called greetings that takes a string and returns a string. After the function
is defined, we test it by giving it the input "World" and checking that it outputs the correct string,

8

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

CSE/IT 107L Lab 3: Defining Functions and Modules

"Hello World!". If we run python3 bad_artificial_intelligence.py on its own, it will print
the expected output:

1 The `artificial_intelligence` module has passed all tests!

However, this is module still broken! If we wish to use the function greetings in some other
Python program, then we’ll see that it has unexpected side effects. Now let’s see an example where
we import our existing code and use it in another program, called greeter.py:

1 import bad_artificial_intelligence
2

3 user_name = input("Please type your name: ")
4 greetings = bad_artificial_intelligence.greetings(user_name)
5 print(greetings)

Side Note: To import another module, you need to make sure that both files are in the same
directory! Otherwise, you will see this error message:

1 $ python3 greeter.py # files in wrong directories
2 Traceback (most recent call last):
3 File "greeter.py", line 1, in <module>
4 import bad_artificial_intelligence
5 ImportError: No module named 'bad_artificial_intelligence'

Here’s what happens when greeter.py is run correctly:

1 $ ls
2 greeter.py bad_artificial_intelligence.py
3

4 $ python3 greeter.py
5 Please type your name: gazorpazorpfield
6 The `bad_artificial_intelligence` module has passed all tests!
7 Hello gazorpazorpfield!

The problem here is that greeter.py is also printing the output of bad_artificial_intelligence.py.
This isn’t what we want! The testing code in our module has nothing to do with our greeter
printing script! How can we make our module more modular? In this case, the problem is in how
we wrote the bad_artificial_intelligence.py file.

4.3 Full Solution: Import Your Code and Check the __name__ Variable

Please refer to the previous section if you haven’t written the file bad_artificial_intelligence.py.
The problem with the previous version of the file greeter.py is that the testing code for
bad_artificial_intelligence was always running, even when the module was being used only
for its bad_artificial_intelligence.greetings function.
The math and the turtle modules are defined in the math.py and turtle.py files located some-
where on your machine. They may have testing code, or sample code, but this code would only
run if you were to type python3 /crazy/file/path/turtle.py or python3 -m turtle (try this for
different modules).

9

CSE/IT 107L Lab 3: Defining Functions and Modules

The question is: how does a file know whether it’s being imported as a module using
import test_file or if it’s being run as a program using python3 test_file.py? Python keeps
a variable called __name__. It is set to the file name, unless the program is being run using
python3 test_file.py. In this case, the variable is set to "__main__".
Here is the corrected version of the bad_artificial_intelligence.py file, now called
artificial_intelligence:

1 def greetings(recipient):
2 greeting = "Hello {}!".format(recipient)
3 return greeting
4

5 # If this file is being run as `python3 artificial_intelligence`, run some testing code
6 if __name__ == "__main__":
7 if greetings("World") == "Hello World!":
8 result = "passed"
9 else:

10 result = "failed"
11 print("The `artificial_intelligence` module has {} all tests!".format(result))

Change the greeter.py Python script so that it imports and uses this module instead. Its output:

1 $ python3 greeter.py
2 Please type your name: gazorpazorpfield
3 Hello gazorpazorpfield!

4.4 Boilerplate Code: Check if __name__ == "__main__"

All of your programs are required to have the boilerplate code for checking if __name__ equals
"__main__" and a main() function for running code that doesn’t belong in any other function.
Any code that previously would have gone outside of any function declaration should now go
inside a main() function as shown below. This is so you can test your main code from the Python
interactive shell, or from another program.
Furthermore, it’s strongly advised that all of the code in your program that uses IO functions, like
input() or print(), should only be called from within the main function! This is the best way to
avoid the situation we ran into in our example, where our module was printing messages unrelated
to the program that was using it. When you’re reusing code from some other program, you don’t
want the functions you use to clutter up your program by printing irrelevant messages to your
screen.

This code follows the boilerplate requirement:

1 def f(x):
2 return x % 5
3

4 def main():
5 # test and demo f
6 print(f(5) == f(10))
7 i = input()

8 i = int(i)
9 print(f(i))

10

11 if __name__ == "__main__":
12 main()

10

CSE/IT 107L Lab 3: Defining Functions and Modules

This code is doing it wrong:

1 def f(x):
2 print("sup br0s?")
3 print("I just got {}!".format(x))
4 print("Think it's divisible by 5?")
5 return x % 5

6

7 # test f
8 print(f(5) == f(10))
9 i = input()

10 i = int(i)
11 print(f(i))

Be the change you wish to see in the world. Write clean code.

5 Making Calculations Shorter

Python operators such as +, -, *, %, were introduced in Lab 1. There is a variant of these that you
can use to assign to a variable.

1 >>> x = 5
2 >>> x += 3 # same as x = x + 3
3 >>> x
4 8
5 >>> x *= 10 # same as x = x * 10
6 >>> x
7 80

The available assignment operators are:

+= addition

-= subtraction

*= multiplication

/= division

//= integer division

**= exponentiation

6 Sample Program

This sample program defines some relatively short functions and a main() function for getting
input and printing the return value of both functions.

1 import math
2

3 def first_root(a, b, c):
4 root = -b + math.sqrt(b ** 2 + 4 * a * c) / (2 * a)
5 return root
6

7 def second_root(a, b, c):
8 root = -b - math.sqrt(b ** 2 + 4 * a * c) / (2 * a)
9 return root

10

11 def main():
12 # Get three floating point numbers as input until the user types 'exit'.
13 print('Type the coefficients of a quadratic equation a*x**2 + b*x + c=0.')
14 print('Type "exit" to finish.')

11

CSE/IT 107L Lab 3: Defining Functions and Modules

15

16 user_input = 'y'
17 while user_input == 'y':
18 a = float(input('a > '))
19 b = float(input('b > '))
20 c = float(input('c > '))
21

22 # Calculate and print the roots.
23 root1 = first_root(a, b, c)
24 root2 = second_root(a, b, c)
25 if root1 == root2:
26 print('Repeated root is {}.'.format(root1))
27 else:
28 print('Roots are {} and {}.'.format(root1, root2))
29

30 user_input = input('More input? Type (y) or (n) > ')
31

32 if __name__ == '__main__':
33 main()

12

CSE/IT 107L Lab 3: Defining Functions and Modules

7 Exercises

New Requirements

Please be aware of the new code style requirement. See lab 2 for a description of PEP 8.
Also, we now require your programs to have the boilerplate code as shown in Section 4.4 on
page 10.

Exercise 7.1 (fizzbuzz.py).
Have the user enter a positive integer number. Then, print the numbers from 1 to that number
each on a line. When the printed number is divisible by 3, print “Fizz”, and when the number
is divisible by 5, print “Buzz”, and when it is divisible by both, print “FizzBuzz”.
You must use .format() and a while loop.
Should look like this when run:

1 Enter a number: -1
2 Not a positive number!

1 Enter a number: 16
2 1
3 2
4 3 Fizz
5 4
6 5 Buzz
7 6 Fizz
8 7
9 8

10 9 Fizz
11 10 Buzz
12 11
13 12 Fizz
14 13
15 14
16 15 FizzBuzz
17 16

Exercise 7.2 (date.py, horoscope.py).
For this exercise you will need to write two different Python modules. Make sure you follow
the boilerplate requirements for both programs, so that the two modules don’t interfere with
each other.
The first program will be in date.py. It should ask the user for a month and a day of the month,
and convert it to the corresponding day of the year. Assume the current year is not a leap
year. For incorrect dates, like ('February', 29), ('March', 42) or ('Scotchtober', 1), your
conversion function should return -1, and you should print an error from the main function.
Hint: Both of these programs will be easier to write if you write a helper function,
days_in_month(), which takes in the name of a month and returns the number of days in that

13

CSE/IT 107L Lab 3: Defining Functions and Modules

month.
Example Input:

1 Enter the month: March
2 Enter the day: 14

Output:

1 Day of the year: 73

Next, horoscope.py should take in a month and a day, and use that date to print the horoscope
of someone who was born on that day. You should use the import statement to make use of
the code you wrote in date.py for determining the user’s astrological sign. The horoscopes
themselves are completely up to you, as long as they start with the correct sign.
Example Input:

1 Enter the month: March
2 Enter the day: 14

Output:

1 Pisces: Tui and La, push and pull, commit and rebase...

For a reference on the zodiac dates, see the “Tropical zodiac” column from this table: https:
//en.wikipedia.org/wiki/Zodiac#Table_of_dates. Watch out for Capricorn! That zodiac
spans from December 22nd to January 20th.

Exercise 7.3 (navigate.py).
Write a program that takes directions from the command line to draw a line. Let the user input
“left”, “right”, “forward”, or “stop”. Left and right turn the turtle left or right however many
degrees are entered, forward moves the turtle forward (however far you wish), and stop ends
the program.
Input:

14

https://en.wikipedia.org/wiki/Zodiac#Table_of_dates
https://en.wikipedia.org/wiki/Zodiac#Table_of_dates

CSE/IT 107L Lab 3: Defining Functions and Modules

1 Please enter a direction: forward
2 Please enter a direction: left
3 How many degrees? 45
4 Please enter a direction: forward
5 Please enter a direction: left
6 How many degrees? -1
7 Invalid number, not moving.
8 Please enter a direction: left
9 How many degrees? 45

10 Please enter a direction: forward
11 Please enter a direction: forward
12 Please enter a direction: left
13 How many degrees? 45
14 Please enter a direction: left
15 How many degrees? 45
16 Please enter a direction: forward
17 Please enter a direction: right
18 How many degrees? 45
19 Please enter a direction: forward
20 Please enter a direction: stop

Output:

15

CSE/IT 107L Lab 3: Defining Functions and Modules

Index of New Functions and Methods

".format(), 1
**=, 11
*=, 11
+=, 11
-=, 11
//=, 11
/=, 11
__name__, 10

boilerplate code, 10

def, 5

function parameters, 4, 5

infinite loop, 3

main(), 10
module, 8

pass, 2
python3 -m turtle, 9

return, 6
return statement, 4, 6

TypeError, 6

while, 2

Submitting

You should submit your code as a tarball that contains all the exercise files for this lab. The submitted
file should be named

cse107_firstname_lastname_lab3.tar.gz

Upload your tarball to Canvas.

List of Files to Submit

7.1 Exercise (fizzbuzz.py) . 13
7.2 Exercise (date.py, horoscope.py) . 13
7.3 Exercise (navigate.py) . 14

Exercises start on page 13.

16

	1 Convert Variables and Values to Formatted Strings Using "".format()
	1.1 Printing Numbers
	1.2 Alternatives

	2 Repetition with While Loops
	2.1 Infinite Loops
	2.2 Indefinite Loops
	2.3 Reading User Input

	3 Defining Functions
	3.1 Intuition
	3.2 A Function With No Input or Output
	3.3 A Function With Input and No Output
	3.4 A Function That Produces Output Using the return Keyword

	4 Reusing Code: Creation and Usage of Modules
	4.1 Bad Solution: Copy and Paste
	4.2 Half Solution: Import Your Code
	4.3 Full Solution: Import Your Code and Check the name Variable
	4.4 Boilerplate Code: Check if name == "main"

	5 Making Calculations Shorter
	6 Sample Program
	7 Exercises
	Submitting

