
Dictionaries and Sets, Types

CSE/IT 107L

NMT Department of Computer Science and Engineering

“Vague and nebulous is the beginning of all
things, but not their end.”

— K. Gibran

“The danger that computers will become like
humans is not as big as the danger that humans
will become like computers.” (“Die Gefahr, dass
der Computer so wird wie der Mensch ist nicht
so groß, wie die Gefahr, dass der Mensch so
wird wie der Computer.”)

— Konrad Zuse

“I don’t need to waste my time with a computer
just because I am a computer scientist.”

— Edsger W. Dijkstra

Introduction

This lab concludes the introduction to Python’s
data structures. Dictionaries are one of Python’s
fundamental data structures. They behave like
lists, but you can use strings, tuples, floats or
any set of integers as indices to Python values.
Dictionaries are useful for storing elements that
are best identified by a description or name
rather than by a strict order. Sets are collections
of unique (non-repeated) values. They support
fast combination operations, like finding the el-
ements that appear in two sets. We will define
the types of Python values and describe how to
convert between different types. Figure 1: http://xkcd.com/1537

i

http://xkcd.com/1537

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

Contents

1 Represent Relationships Between Values Using Dictionares 1
1.1 Creating Dictionaries . 1
1.2 Indexing by Key to Access, Modify, and Add Dictionary Values 2
1.3 Safely Removing Key-Value Pairs Using dict.pop(key, defaultvalue) 3
1.4 Checking Dictionary Properties Using len, in, == 3
1.5 Safe Access Using dict.get(key, defaultvalue) . 4
1.6 Traversing Dictionaries using dict.items(), dict.keys(), dict.values() 4
1.7 Sample Program . 5

2 Sets: Collections With Unique Elements 5
2.1 Creating Sets . 5
2.2 Combining Sets . 6
2.3 Conversions Using set(), list() . 7
2.4 Adding Elements Using set.add() . 7
2.5 Removing Elements Using set.remove() or set.pop() 7
2.6 Traversing Sets With For Loops . 8
2.7 Creating an Empty Set and an Empty Dictionary . 8

3 Ordered Access With Stacks 8

4 List Comprehensions: Concise Iteration 9
4.1 Modifying Collections . 9
4.2 Filtering Elements . 9
4.3 Nested Comprehensions . 10

5 Types 10
5.1 Types of Collections . 11
5.2 Checking Types with the type() Function . 11
5.3 Converting Values to Different Types . 12
5.4 Converting Sequences to Strings With str.join() . 13

6 Sample Program 13

7 Exercises 16

Submitting 19

ii

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

1 Represent Relationships Between Values Using Dictionares

You will often need to define relationships between pairs of Python values. For example, a dataset
of names of movies and their ratings could be represented using strings (movie names) that are
related to floats (movie ratings). As another example, you could have time measurements (floats)
related to another measurement (a float or integer). One of this lab’s exercises involves counting
the number of letters in the user’s input. In this case, you could relate one-letter strings to integers.

1.1 Creating Dictionaries

How do you represent relationships between the two groups of values? Python offers dictionaries to
help you perform this task. They are a fundamental data structure and are also known as associative
arrays, hash maps, or key-value pairs. Some examples:

1 movie_ratings = {"Sharknado 4": 2.0, "Spirited Away": 4.0, "The Big Lebowski": 4.0}
2 temperatures = {0.0: 75.2, 0.5: 79.2, 1.0: 80.3, 1.5: 81.0, 2.0: 88.5, 2.5: 98.6}
3 letter_count = {"e": 99, "t": 92, "a": 90, "q": 2}
4 moons = {"venus": [], "earth": ["moon"], "mars": ["phobos", "deimos"]}

Listing 1: Example dictionaries.

A dictionary is written by surrounding a list
of comma-separated key-value pairs with curly
braces. Key-value pairs are a Python value that
represents the key, then a colon, and a Python
value that represents the value.

1 dictionary = {key1: value, key2: value}

The values in a dictionary can be any Python
value: strings, integers, booleans, lists of any
Python value, other dictionaries, etc.. The keys
in a dictionary must not be repeated and must
be immutable Python values: these include
strings, ints, floats, tuples of any of these, and
some other values.
Figure 2 visualizes the dictionaries given in the
previous code sample. Notice that the order of
key-value pairs is not preserved. Different keys
can be related to the same value. For example,
there are two keys in the movie_ratings dictio-
nary that have the value 4.0. Values can be lists,
but keys cannot be values.

Figure 2: A visualization of the dictionaries in listing
1 created using pythontutor.com

1

pythontutor.com

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

Python raises a TypeError if there’s a dictionary with mutable key. Keys can’t be repeated: in this
case, Python ignored all the key-value pairs with key set 1, except for the last one. The following
session from a Python interactive shell demonstrates the definition of both valid and invalid
dictionaries:

1 >>> {1: 'a', 2: 'm', 3: 'z'}
2 {1: 'a', 2: 'm', 3: 'z'}
3 >>> {'a': 1, 'm': 2, 'z': 3} # order is not preserved
4 {'a': 1, 'z': 3, 'm': 2}
5 >>> {1: [1, 2, 3], 4: [9, 10]}
6 {1: [1, 2, 3], 4: [9, 10]}
7 >>> {[1, 2, 3]: 1, [9, 10]: 4} # lists can't be keys
8 Traceback (most recent call last):
9 File "<stdin>", line 1, in <module>

10 TypeError: unhashable type: 'list'
11 >>> {1: 1, 1: 2, 1: 3} # only the last is kept
12 {1: 3}
13 Traceback (most recent call last):
14 File "<stdin>", line 1, in <module>
15 TypeError: unhashable type: 'list'

1.2 Indexing by Key to Access, Modify, and Add Dictionary Values

Similar to a list, you may access values in the dictionary by indexing on the dictionary’s keys to
access elements. For example:

1 >>> letter_count = {"e": 99, "t": 92, "a": 90, "q": 2}
2 >>> "the letter {} occurs {} times".format("e", letter_count["e"])
3 'the letter e occurs 99 times'
4 >>> moons = {"venus": [], "earth": ["moon"], "mars": ["phobos", "deimos"]}
5 >>> moons["venus"]
6 []
7 >>> moons["mars"]
8 ['phobos', 'deimos']
9 >>> moons["jupiter"]

10 Traceback (most recent call last):
11 File "stdin", line 1, in <module>
12 moons["jupiter"]
13 KeyError: 'jupiter'
14 Traceback (most recent call last):
15 File "stdin", line 1, in <module>
16 moons["jupiter"]
17 KeyError: 'jupiter'

Notice, Python raises an IndexError whenever you try to access a key that doesn’t appear in the
dictionary.
Just like lists, the values to a dictionary key can be reassigned by using indexing with assignment. In
the following example, the value of the key 'breakfast' is changed to 'toast'. You can also add
key-value pairs by assigning to a key that isn’t in the dictionary. In the example, the key 'brunch'
is added and it has value 'biscuits'.

2

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

1 >>> food = {'breakfast': 'burrito', 'lunch': 'burger', 'dinner': 'tacos'}
2 >>> print(food)
3 {'lunch': 'burger', 'breakfast': 'burrito', 'dinner': 'tacos'}
4 >>> food['breakfast'] = 'toast' # add a new key!
5 >>> print(food)
6 {'dinner': 'tacos', 'lunch': 'burger', 'breakfast': 'toast'}
7 >>> food['brunch'] = 'biscuits'
8 >>> food
9 {'dinner': 'tacos', 'brunch': 'biscuits', 'lunch': 'burger', 'breakfast': 'toast'}

1.3 Safely Removing Key-Value Pairs Using dict.pop(key, defaultvalue)

To remove a key-value pair, use the dict.pop(key, defaultvalue) function. This function removes
the given key from the dictionary if it exists, if it does not, then it returns the given default value.
For example:

1 >>> letter_count = {"e": 99, "t": 92, "a": 90, "q": 2}
2 >>> letter_count["e"]
3 99
4 >>> removed_value = letter_count.pop("e", 0)
5 >>> removed_value
6 99
7 >>> letter_count
8 {'t': 92, 'a': 90, 'q': 2}
9 >>> removed_value2 = letter_count.pop("z", 0) # key 'z' not in dictionary

10 >>> removed_value2
11 0

1.4 Checking Dictionary Properties Using len, in, ==

The in keyword tests whether an item is a key in a dictionary. To find the number of key-value pairs
in a dictionary, use the len function. Dictionary equality can be tested using the boolean operator
==.

1 >>> states = {'NM' : 'New Mexico', 'TX' : 'Texas', 'KS' : 'Kansas'}
2 >>> states2 = {'NM' : 'New Mexico', 'TX' : 'Texas', 'KS' : 'Kansas'}
3 >>> states3 = {'NY' : 'New York', 'TX' : 'Texas', 'KS' : 'Kansas'}
4 >>> 'NM' in states
5 True
6 >>> 'NY' in states
7 False
8 >>> len(states)
9 3

10 >>> states == states2
11 True
12 >>> states == states3
13 False

3

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

1.5 Safe Access Using dict.get(key, defaultvalue)

The dict.get(key, defaultvalue) function is used to access a dictionary without the risk of
Python raising a KeyError if the element does not exist. If the given key is not present in the
dictionary, the function will return the given default value instead of causing an error. A sample:

1 >>> moons = {"venus": [], "earth": ["moon"], "mars": ["phobos", "deimos"]}
2 >>> moons.get("earth", [])
3 ['moon']
4 >>> moons["jupiter"]
5 Traceback (most recent call last):
6 File "stdin", line 1, in <module>
7 moons["jupiter"]
8 KeyError: 'jupiter'
9 >>> moons.get("jupiter", [])

10 []
11 Traceback (most recent call last):
12 File "stdin", line 1, in <module>
13 moons["jupiter"]
14 KeyError: 'jupiter'

1.6 Traversing Dictionaries using dict.items(), dict.keys(), dict.values()

You can use a for-loop to iterate over the keys, values, or key-value pairs of a dictionary.
The dict.items() function returns something similar to a list of tuples where the first element
of each tuple is the key of a dictionary item and the second element is the corresponding value.
The dict.values() and dict.keys() functions return a list of the dictionary’s values or a list of its
keys. Any of these three functions can be used to iterate through a dictionary. For example,

1 >>> states = {'NM' : 'New Mexico', 'TX' : 'Texas', 'KS' : 'Kansas'}
2 >>> states.keys()
3 dict_keys(['TX', 'KS', 'NM'])
4 >>> states.values()
5 dict_values(['Texas', 'Kansas', 'New Mexico']
6 >>> states.items()
7 dict_items([('KS', 'Kansas'), ('TX', 'Texas'), ('NM', 'New Mexico')])
8 >>> for state_short, state_name in states.items():
9 ... print(state_short, state_name)

10 KS Kansas
11 TX Texas
12 NM New Mexico
13

14 >>> for state_short in states.keys():
15 ... print(state_short, states[state_short])
16 KS Kansas
17 TX Texas
18 NM New Mexico
19

20 >>> for state_name in states.values():
21 ... print(state_name)

4

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

22 Texas
23 Kansas
24 New Mexico

If you need the iteration to happen in order, you can sort dictionary keys and then iterate through
the dictionary using for key in sorted(d.keys()). Otherwise, iteration order is not enforced.

1.7 Sample Program

1 states = {'NM' : 'New Mexico', 'TX' : 'Texas', 'KS' : 'Kansas'}
2 capitals = { # multiline dictionaries are easier to read
3 'NM' : 'Santa Fe',
4 'TX' : 'Austin',
5 'KS' : 'Kansas City',
6 }
7

8 state = input('Enter a state >>> ')
9 if state in states:

10 print('You selected {}. The state capital is {}.'.format(states[state],
11 capitals[state]))
12 else:
13 print('The state you selected is not known to this program.')

Notice the dictionary capitals was written on multiple lines for readability.

2 Sets: Collections With Unique Elements

2.1 Creating Sets

Sets are a lot like lists, but no element can appear twice and a set’s elements are unordered. Additionally,
a set cannot contain mutable Python values (like lists). Sets are mutable.
A set is made using curly braces by converting a list:

1 >>> a = {5, 5, 4, 3, 2} # duplicates ignored
2 >>> print(a)
3 {2, 3, 4, 5}
4 >>> b = set([5, 5, 4, 3])
5 >>> print(b)
6 {3, 4, 5}

Because sets are unordered, they cannot be indexed. That means you cannot index a set using the
[] operator.

1 >>> a = {5, 4, 3, 2}
2 >>> a[1]
3 Traceback (most recent call last):

5

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

4 File "<stdin>", line 1, in <module>
5 TypeError: 'set' object does not support indexing
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 TypeError: 'set' object does not support indexing

2.2 Combining Sets

The | operator can be used to join two sets together. This creates a new set that contains the elements
in each of the two sets. This is called the union of the two sets. Since the result is also a set, duplicate
values will only appear once.

1 >>> a = {1, 2, 4, 8, 16}
2 >>> b = {1, 3, 9, 27}
3 >>> a | b
4 {1, 2, 3, 4, 8, 9, 16, 27}

The & operator can be used to find the intersection of two sets. This is the set containing all elements
that are in both sets.

1 >>> a = {2, 4, 6, 8, 10, 12}
2 >>> b = {3, 6, 9, 12, 15, 18}
3 >>> a & b
4 {12, 6}

The - operator can be used to find the difference of two sets. This set contains all of the elements of
the first set excluding the elements in the second set.

1 >>> a = {2, 4, 6, 8, 10, 12}
2 >>> b = {3, 6, 9, 12, 15, 18}
3 >>> a - b
4 {8, 2, 10, 4}

The ^ operator can be used to find the symmetric difference of two sets. This is the set containing all
elements in either of the original sets, but not in both.

1 >>> a = {'one', 'eight'}
2 >>> b = {'two', 'four', 'six', 'eight'}
3 >>> a ^ b
4 {'one', 'six', 'two', 'four'}

Operator Meaning Definition

a | b in either union of a and b
a & b in both intersection of a and b
a - b all not in b difference of a and b
a ^ b all elements not in common symmetric difference of a and b

6

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

2.3 Conversions Using set(), list()

A list can be converted into a set using the set() function:

1 >>> a = [1, 5, 2, 2.3, 5, 2]
2 >>> set(a) # duplicate removed!
3 {1, 2, 2.3, 5}

Similarly, a set can be converted into a list using the list() function:

1 >>> a = {1, 2, 2, 5, 3, 2}
2 >>> a
3 {1, 2, 5, 3}
4 >>> list(a)
5 [1, 2, 3, 5]

2.4 Adding Elements Using set.add()

To add an element to a set, use the set.add(element) function. A sample:

1 >>> a = {1, 2, 5, 3}
2 >>> a.add(5)
3 >>> a
4 {1, 2, 3, 5}
5 >>> a.add(7)
6 >>> a
7 {1, 2, 3, 5, 7}

2.5 Removing Elements Using set.remove() or set.pop()

To remove an element that is present in the set, use the set.remove(element) function. To remove
an arbitrary element from the set, use the set.pop() function. Python raises a KeyError if the set is
empty or the element is not in the set. A sample:

1 >>> a = {1, 2, 5, 3}
2 >>> an_element = a.pop()
3 >>> an_element, a
4 (1, {2, 3, 5})
5 >>> a.remove(5)
6 >>> a
7 {2, 3}
8 >>> a.remove(10)
9 Traceback (most recent call last):

10 File "<doctest lab7.tex[76]>", line 1, in <module>
11 a.remove(10)
12 KeyError: 10
13 Traceback (most recent call last):
14 File "<doctest lab7.tex[76]>", line 1, in <module>

7

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

15 a.remove(10)
16 KeyError: 10

2.6 Traversing Sets With For Loops

You may also iterate over a set using a for-loop. Order of iteration is unspecified.

1 >>> companions_nine = {'rose', 'jack'}
2 >>> companions_ten = {'rose', 'mickey', 'jack', 'donna', 'martha', 'wilf'}
3 >>> for companion in companions_nine:
4 ... print(companion)
5 jack
6 rose

2.7 Creating an Empty Set and an Empty Dictionary

Note that empty curly braces create an empty dictionary. To create an empty set, use the set()
function:

1 >>> type({})
2 <class 'dict'>
3 >>> type(set())
4 <class 'set'>

3 Ordered Access With Stacks

Imagine a stack of plates. You can only add plates to the top and remove plates from the top. This a
“Last-In-First-Out” data structure: If you add three plates to the stack, the last one you added will
be the first one you remove. Stacks are a specialized data structure. They are at the heart of every
operating system and used in many pieces of software.
A stack is similar to a Python list where you can only add elements to the end or remove elements
from the end. This is accomplished using the list.pop() and list.append(element) methods on
lists. When given no arguments, the pop method will remove the last element of the list and return
it. The append method will add an element to the end of the list. The array index list[-1] is used
to inspect the top of the stack; or the last element of the list. For example:

1 >>> stack = [1, 2, 3]
2 >>> a = stack.pop()
3 >>> print(a)
4 3
5 >>> print(stack)
6 [1, 2]
7 >>> stack.append(4)
8 >>> print(stack)
9 [1, 2, 4]

8

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

10 >>> stack[-1] # top!
11 4

Interacting with the elements of the list in any other way violates the idea of the list being a stack.
By adhering to this restriction, we can effectively invent a new data structure based on existing
Python data structures. There are more effective ways of creating data structures for organizing
data according to specific needs. For example, you could compose two data structures. If you
needed a dictionary with ordered key-value pairs, you could use a list of tuples where the first
element in the tuple is the key and the second is the value.

4 List Comprehensions: Concise Iteration

4.1 Modifying Collections

List comprehensions can be used to create new lists by doing something to each element of a
currently existing list or range. For example, if we want to make every string in a list of strings
lowercase we could use a for-loop to call .lower() on each string.

1 >>> strings = ['Python', 'N.M.']
2 >>> result = []
3 >>> for string in strings:
4 ... result.append(string.lower())
5 >>> result
6 ['python', 'n.m.']

List comprehensions are a more concise way of doing this.

1 >>> strings = ['Python', 'N.M.']
2 >>> result = [string.lower() for string in strings]
3 >>> print(result)
4 ['python', 'n.m.']

We can process more complicated elements with list comprehensions. If we have a list of dictionaries
containing lists, we can find the maximum element in each sublist by using this list comprehension:

1 >>> data = [{'d': [1,2,3]}, {'d': [4,5]},
2 ... {'d': [0,0,1]}]
3 ...
4 >>> [max(dictionary['d']) for dictionary in data]
5 [3, 5, 1]

4.2 Filtering Elements

What if we want to exclude elements? In this code, we take a list of words and keep all words of
length less than 2.

9

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

1 >>> strings = ['a', 'ab', 'abb', 'aab', 'aaa']
2 >>> result = []
3 >>> for string in strings:
4 ... if len(string) <= 2:
5 ... result.append(string)
6 ...
7 >>> result
8 ['a', 'ab']

This can be written more concisely by using an if statement within a list comprehension.

1 >>> strings = ['a', 'ab', 'abb', 'aab', 'aaa']
2 >>> [x for x in strings if len(x) <= 2]
3 ['a', 'ab']

4.3 Nested Comprehensions

We can also write multiple for statements and if statements in a list comprehension. This example
creates a list of floating point numbers by dividing two integers.

1 >>> result = [y / x for x in range(3) if x != 0 for y in range(3)]
2 >>> print(result)
3 [0.0, 1.0, 2.0, 0.0, 0.5, 1.0]

These statements should be read from right to left. So the previous list comprehension is the same
as these nested statements:

1 result = []
2 for x in range(10):
3 if x != 0:
4 for y in range(10):
5 result.append(y / x)

5 Types

In Python, every value has a type. We have already seen a few types in action: integers, floating-
point numbers, strings, and boolean values, lists, tuples, sets, and dictionaries. The type of a value
or variable restricts what it can represent. Here is a list of some types and example values.

Name Description Examples Convert y

Int Integer, whole number 1, 123, -12 int(y)
Float Floating-point number 1.0, 3.1415, -0.01 float(y)
String Sequence of characters "", "1", "abc 123\n" str(y)
Boolean True or false True, False bool(y)

10

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

Most programming languages have types for a good reason: for one, operations (such as +, -, . . .)
have different effects on different types. For example, an integer * an integer results in an integer
(the multiplication of the two operands), but an integer * a string results in the string repeated.
However, a string * a string results in an error:

1 >>> 5*3
2 15
3 >>> 5*'hi'
4 'hihihihihi'
5 >>> 'hi'*'hi'
6 Traceback (most recent call last):
7 File "<stdin>", line 1, in <module>
8 TypeError: can't multiply sequence by non-int of type 'str'
9 Traceback (most recent call last):

10 File "<stdin>", line 1, in <module>
11 TypeError: can't multiply sequence by non-int of type 'str'

Also, Python can speed up your programs by picking efficient ways of dealing with different types.
Multiplying integers and multiplying floating point numbers require very different techniques.
Python may optimize code if the type of the number is known.

5.1 Types of Collections

In the previous labs, we have described and demonstrated several data structures. Each of them
has its own type.

Name Description Examples Convert y

List Sequence of values [], [0, 1], [True, True] list(y)
Tuple Immutable sequence of values (0, 1), ('a', 'b') (y)
Dictionary Relationship between values {}, {1:2}, {'a':True} dict(y)
Set Collection of unique values {0,1}, {True} set(y)

5.2 Checking Types with the type() Function

The type() function returns the type of a value.

1 >>> type(5)
2 <class 'int'>
3 >>> x = 10
4 >>> type(x)
5 <class 'int'>
6 >>> type('Allons-y!')
7 <class 'str'>
8 >>> type(True)
9 <class 'bool'>

11

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

5.3 Converting Values to Different Types

There are several functions that can convert the types of Python values. Only values have types,
variables can store values of any type.

1 >>> float("5.5") # convert string with 5.5 to a float
2 5.5
3 >>> int("5") # integer containing 5
4 5
5 >>> str(5) # string containing 5
6 '5'
7 >>> # Note that an impossible conversion will throw an error
8 >>> int("55a")
9 Traceback (most recent call last):

10 File "<stdin>", line 1, in <module>
11 ValueError: invalid literal for int() with base 10: '55a'
12 Traceback (most recent call last):
13 File "<stdin>", line 1, in <module>
14 ValueError: invalid literal for int() with base 10: '55a'

There are several functions that work on different types of collections. The len() function can be
used on any collection object in order to find the number of elements. All collections can be iterated
over with for loops, All collections can use the in keyword to test if an element is in that collection.
For dictionaries, this will compare against the list of keys, not the values.

Data
Structure

Mutable Mutable
elements

Indexing Ordered Other properties

List [] yes yes by whole numbers yes can contain elements more
than once

Sets {} yes no not indexable no no element can appear
more than once

Tuples () no yes by whole numbers yes can contain elements more
than once

Dictionary
{}

yes yes by anything “hash-
able” (immutable
collections or basic
types)

no

Table 1: Summary of Data Structures in Python

Tuples, sets, and lists can all be freely converted from one to another using the tuple(), set(),
list(), str(), and dict() functions.

1 >>> food = ('nothing', 'cereal', 'lemonheads')
2 >>> list(food)
3 ['nothing', 'cereal', 'lemonheads']
4 >>> str(food) # not particularly useful
5 "('nothing', 'cereal', 'lemonheads')"
6 >>> s = "The cat in the"

12

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

7 >>> list(s)
8 ['T', 'h', 'e', ' ', 'c', 'a', 't', ' ', 'i', 'n', ' ', 't', 'h', 'e']
9 >>> tuple(s)

10 ('T', 'h', 'e', ' ', 'c', 'a', 't', ' ', 'i', 'n', ' ', 't', 'h', 'e')

5.4 Converting Sequences to Strings With str.join()

Note str() cannot undo the action of list() on a string. That is, str(list("ABC")) is not equal to
"ABC". Use "".join(list("ABC")) for that.
To add spaces between the elements of a list, change the string at the beginning.

1 >>> "".join(['c', 'a', 't'])
2 'cat'
3 >>> " ".join(['c', 'a', 't'])
4 'c a t'

The elements of the sequence can be of any type.

1 >>> ' '.join(("dinosaurs", "roamed the", "earth"))
2 'dinosaurs roamed the earth'
3 >>> print('\n> '.join(("dinosaurs", "roamed the", "earth")))
4 dinosaurs
5 > roamed the
6 > earth

6 Sample Program

1 import turtle
2

3 # All units in kilometers.
4 planets8 = [
5 {"name": "mercury", "radius": 2439.7, "color": "lightgrey", "moons": []},
6 {"name": "venus", "radius": 6051.8, "color": "orange", "moons": []},
7 {"name": "earth", "radius": 6371, "color": "blue",
8 "moons": [{"name": "moon", "radius": 1737.4, "color": "lightgrey"}]},
9 {"name": "mars", "radius": 3389.5, "color": "red",

10 "moons": [{"name": "phobos", "radius": 11.1, "color": "grey"},
11 {"name": "deimos", "radius": 6.3, "color": "grey"}]},
12 {"name": "jupiter", "radius": 69911, "color": "orange",
13 "moons": [{"name": "ganymede", "radius": 2631.2, "color": "grey"},
14 {"name": "callisto", "radius": 2410.3, "color": "darkgrey"},
15 {"name": "io", "radius": 1830, "color": "lightgreen"},
16 {"name": "europa", "radius": 1560.8, "color": "green"}]},
17 {"name": "saturn", "radius": 58232, "color": "yellow",
18 "moons": [{"name": "titan", "radius": 2574, "color": "orange"},
19 {"name": "rhea", "radius": 763.5, "color": "grey"},
20 {"name": "iapets", "radius": 734.3, "color": "darkgrey"},

13

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

21 {"name": "dione", "radius": 561.4, "color": "grey"}]},
22 {"name": "uranus", "radius": 25362, "color": "lightblue",
23 "moons": [{"name": "titania", "radius": 788.4, "color": "grey"},
24 {"name": "oberon", "radius": 761.4, "color": "grey"},
25 {"name": "umbriel", "radius": 584.7, "color": "darkgrey"},
26 {"name": "ariel", "radius": 578.9, "color": "grey"}]},
27 {"name": "neptune", "radius": 24622, "color": "blue",
28 "moons": [{"name": "triton", "radius": 1352.6, "color": "salmon"},
29 {"name": "proteus", "radius": 210, "color": "grey"},
30 {"name": "nereid", "radius": 170, "color": "grey"},
31 {"name": "larissa", "radius": 97, "color": "grey"}]}, # :(
32]
33

34 def draw_body(body, zoom):
35 """This function draws a filled-in circle based on the 'radius' and
36 'color' keys of the dictionary `body`. The drawing is scaled by the
37 factor `zoom`."""
38 turtle.dot(2 * body["radius"] * zoom, body["color"])
39

40 def separate_bodies(body, prev_body_radius, zoom, sep):
41 """This function moves the turtle the appropriate distance to avoid
42 overlap between two drawings. Minimal separation given by `sep`."""
43 distance = (body["radius"] + prev_body_radius) * zoom + sep
44 turtle.forward(distance)
45 return distance
46

47 def draw_planets(system, zoom):
48 separation = 20 # Distance between planets.
49 moon_separation = 10 # Distance between moons and their planets.
50

51 prev_planet_radius = 0
52 for index, planet in enumerate(system):
53 if index > 0:
54 prev_planet_radius = system[index - 1]["radius"]
55 separate_bodies(planet, prev_planet_radius, zoom, separation)
56 draw_body(planet, zoom)
57

58 # Draw moons
59 turtle.left(90)
60 distance = 0 # How far has the turtle moved to draw the moons?
61 prev_radius = planet["radius"]
62 for index2, moon in enumerate(planet["moons"]):
63 if index2 > 0:
64 prev_radius = planet["moons"][index2 - 1]["radius"]
65 distance += separate_bodies(moon, prev_radius, zoom, moon_separation)
66 draw_body(moon, zoom)
67 turtle.forward(-distance)
68 turtle.right(90)
69

70 def draw_system(system, zoom):
71 # Program inputs.
72 print('Welcome to the 107L2 Radially-Precise Planetarium!')
73 turtle.tracer(False)
74

14

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

75 turtle.bgcolor('black') # Black background
76 turtle.penup() # Hide pen
77

78 # Draw (2 * decoration) ** 2 stars.
79 decoration = 15
80 scale = max(turtle.window_height(), turtle.window_width())
81 for col in range(-decoration, decoration):
82 for row in range(-decoration, decoration):
83 # row / decoration gives is a number between -1 and 1
84 # the `scale` variable determines the space between stars
85 y = row / decoration * scale
86 # shift every other row of stars by 50%
87 x = ((col + 0.5 * (row % 2)) / decoration) * scale
88

89 turtle.goto(x, y)
90

91 # make every other star's radius larger
92 turtle.dot(1 + col % 2, 'white')
93 turtle.goto(0, 0)
94

95 # Draw planets starting near the screen's edge.
96 turtle.forward(-turtle.window_width() / 2 * 0.9)
97 draw_planets(system, zoom)
98

99 turtle.done()
100

101 if __name__ == "__main__":
102 draw_system(planets8, 0.003)

15

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

7 Exercises

Exercise 7.1 (lettercount.py).
Write program that reads in a string on the command line and returns a table of the letters of
the alphabet in alphabetical order which occur in the string together with the number of times
each letter occurs. Case should be ignored. A sample run of the program would look this:

1 Enter some letters >>> The cat in the hat
2 a 2
3 c 1
4 e 2
5 h 3
6 i 1
7 n 1
8 t 4

This should involve writing a function called count_letters that takes in a string and returns
a dictionary with these letters and counts.

Supplementary Files

The file test_letter_count.py is available on Canvas. Open it to see more examples.

Exercise 7.2 (date2.py, horoscope2.py).
You will use dictionaries to write more readable and compact versions of date.py and
horoscope.py. The requirements for both files have changed, please read the following text.
Write a program date2.py, which should take in a month and day of the month, and convert
it to the corresponding day of the year. Assume that leap years exist. For incorrect dates the
conversion function should return -1, and you should print an error from main.
For example:

1 python3 date2.py
2 Type stop or enter a month, day, and year.
3 > March, 14, 2015
4 Day of the year: 73
5 > December, 14, 2016
6 Day of the leap year: 349
7 > Oktober, 91, 2015
8 Invalid date entered.
9 > stop

Use the following boolean expression to check if a year is a leap year or not:

1 is_leap = (year % 4 == 0 and year % 100 != 0) or year % 400 == 0

Next, the horoscope2.py program should take in a month and a day. It should print an error
message if the date is invalid, otherwise it should print the horoscope of someone who was

16

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

born on that day. You should use the import statement to make use of the code you wrote in
date.py for determining the user’s astrological sign. The horoscopes themselves are completely
up to you, as long as they start with the correct sign.
For example:

1 python3 horoscope2.py
2 Type stop or enter a month, day, and year.
3 > March, 14, 2015
4 Pisces: Tui and La, push and pull, commit and rebase...
5 > May, 5, 1848
6 Taurus: today you must choose between earth and sea, C and miniKanren...
7 > February, 29, 1847
8 Invalid date entered.
9 > stop

For a reference on the zodiac dates, see the “Tropical zodiac” column from this table: https:
//en.wikipedia.org/wiki/Zodiac#Table_of_dates. Watch out for Capricorn! That zodiac
spans from December 22nd to January 20th, which for this program means that it will have
two different date ranges, 1 to 20 and 356 to 365.

Exercise 7.3 (rpn_calculator.py).
Write a reverse Polish notation calculator. In reverse Polish notation (also known as HP calcula-
tor notation), mathematical expressions are written with the operator following its operands.
For example, 3 + 4 becomes 3 4 +.
Order of operations is entirely based on the ordering of the operators and operands. To write
3 + (4 ∗ 2), we would write 4 2 ∗ 3 + in RPN. The expressions are evaluated from left to right.
A longer example of an expression is this:

5 1 2 / 4 ∗ + 3 −

which translates to
5 + ((1/2) ∗ 4)− 3

If you were to try to “parse” the RPN expression from left to right, you would probably
“remember” values until you hit an operator, at which point you take the last two values and
use the operator on them. In the example expression above, you would store 5, then 1, then 2,
then see the division operator (/) and take the last two values you stored (1 and 2) to do the
division. Then, you would store the result of that (0.5) and encounter 4, which you store. When
you encounter the multiplication sign (*), you would take the last two values stored and do the
operation (4 ∗ 0.5) and store that.
Following this through step by step, the steps would look something like this (the bold number
is the most recently computed value):

1. 5 1 2 / 4 * + 3 -

2. 5 0.5 4 * + 3 -

3. 5 2 + 3 -

17

https://en.wikipedia.org/wiki/Zodiac#Table_of_dates
https://en.wikipedia.org/wiki/Zodiac#Table_of_dates

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

4. 7 3 -

5. 4

Writing this algorithm for evaluating RPN in pseudo code, we get:

1. Read next value in expression.

2. If number, store.

3. If operator:

(a) Remove last two numbers stored.

(b) Do operation with these last two numbers.

(c) Store the result of the operation as last number.

If you keep repeating this algorithm, you will eventually just end up with one number stored
unless the RPN expression was invalid.
Your task is to write an RPN calculator which asks the user for an RPN expression and prints
the result of that expression. You must use a stack (see Section ??). The RPN algorithm has to be
in a separate function (not main). You need to support the four basic operators (+, -, *, and /).
You should detect and display messages for the following errors:

• Operand is used when not enough numbers are stored.

• More or less than one number stored after the expression is evaluated.

Please see the example input and output below for expressions you can test with.

RPN Expression Output

5 1 2 / 4 * + 3 - 4
312 999 + 1311

4 2 + 1 5 + * + Not enough operands for +.
2 100 3 * 5 + 2 2 2 + + * * 3660

Note that you need to support multi-digit numbers. You cannot expect all input to be single
digits.

18

CSE/IT 107L Lab 7: Dictionaries and Sets, Types

Index of New Functions and Methods

==, 3

assignment, 2

converting between types,
12

dict.get(key, defaultvalue),
4

dict.items(), 4
dict.keys(), 4
dict.pop(key, defaultvalue),

3
dict.values(), 4
dictionaries, 1
difference, 6

empty dictionary, 8
empty set, 8

for key in sorted(d.keys()),
5

immutable keys, 1
in, 3
index, 2
IndexError, 2
intersection, 6

key-value pairs, 1
KeyError, 4, 7

len, 3

list.append(element), 8
list.pop(), 8
list[-1], 8

set.add(element), 7
set.pop(), 7
set.remove(element), 7
sort dictionary keys, 5
stack, 8
symmetric difference, 6

type(), 11
TypeError, 2

union, 6

Submitting

You should submit your code as a tarball that contains all the exercise files for this lab. The submitted
file should be named

cse107_firstname_lastname_lab7.tar.gz

Upload your tarball to Canvas.

List of Files to Submit

7.1 Exercise (lettercount.py) . 16
7.2 Exercise (date2.py, horoscope2.py) . 16
7.3 Exercise (rpn_calculator.py) . 17

Exercises start on page 16.

19

	1 Represent Relationships Between Values Using Dictionares
	1.1 Creating Dictionaries
	1.2 Indexing by Key to Access, Modify, and Add Dictionary Values
	1.3 Safely Removing Key-Value Pairs Using dict.pop(key, defaultvalue)
	1.4 Checking Dictionary Properties Using len, in, ==
	1.5 Safe Access Using dict.get(key, defaultvalue)
	1.6 Traversing Dictionaries using dict.items(), dict.keys(), dict.values()
	1.7 Sample Program

	2 Sets: Collections With Unique Elements
	2.1 Creating Sets
	2.2 Combining Sets
	2.3 Conversions Using set(), list()
	2.4 Adding Elements Using set.add()
	2.5 Removing Elements Using set.remove() or set.pop()
	2.6 Traversing Sets With For Loops
	2.7 Creating an Empty Set and an Empty Dictionary

	3 Ordered Access With Stacks
	4 List Comprehensions: Concise Iteration
	4.1 Modifying Collections
	4.2 Filtering Elements
	4.3 Nested Comprehensions

	5 Types
	5.1 Types of Collections
	5.2 Checking Types with the type() Function
	5.3 Converting Values to Different Types
	5.4 Converting Sequences to Strings With str.join()

	6 Sample Program
	7 Exercises
	Submitting

